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Abstract
Traditional operating systems permit data access through the kernel, applying security policy as a
part of that pipeline. The Twizzler operating system flips that relationship on its head, focusing on
an approach where data access is a first-class citizen, getting rid of the kernel as a middleman. This
data-centric approach requires us to rethink how security policy interacts with users and the kernel.
In this thesis, I present the design and implementation of core security primitives in Twizzler. Then I
evaluate the security model with microbenchmarks of core security operations, and ways to increase
performace. Lastly, I discuss a few things we plan to do in the continuation of this work, as its not
conplete by any means.
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Chapter 1

Introduction
Twizzler is a research operating system focused on new programming paradigms possible via

NVM (Non-Volatile Memory)[Bit+20]. It gives programmers direct access to underlying data by
removing the kernel from the datapath, which results in huge performance gains, while using NVM
to make that data persistent across power cycles. However this reimagining of an operating system
leaves many questions for how security is undertaken.

In mainstream operating systems, an omnicient and all-powerful kernel enforces security policy
at runtime. It acts as the bodyguard, holding all I/O and data hostage unless the requesting party
has the authorization to access some resource. This tight coupling of security policy and access
mechanisms works well since any access must be done through the kernel, so why not perform
security checks alongside accesses? This coupling gets challenged as soon as one tries to seperate
access mechanisms from the kernel, as we see in Twizzler.

1.1 Data-Centric Operating Systems
Twizzler defines itself as a data-centric operating system, meaning it is built upon two key principles
[Bit+20]:

1. Providing direct, kernel-free, access to data.

2. Pointers are tied to the data they represent.

These principles emerge from treating persistent data as a first class citizen. Since NVM removes
the necessity of the kernel to serialize and deserialize data from storage devices and memory, it only
makes sense for it to be removed from the access path. If applications want to utilize memory as
truly persisent, they require a persistent way to access that memory, leading to a notion of persistent
pointers.

With the decoupling of the kernel and access methods, we have to rethink how security policy
for data is enforced. While the kernel doesn’t manage the connection between applications and data,
its still responsible for creating that connection. This provides one area of enforcement, where the
kernel can check access rights before granting the application access to data. Twizzler programs the
MMU ( Memory Management Unit ) according to granted access rights and then lets the hardware
enforce it; more detail can be found in section 4.2. Now we have to define the underlying system
that must be enforced.

1.2 Capability Based Security Systems
Capability-based security systems have a rich history in research, and offer an alternative approach
to security, in opposition to the Access Control Lists of prevalent OS’s [ZL09]. Boiled down, a
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capability is a token of authority, holding at minimum some permissions and a unique identifier for
which “thing” those permissions apply to [Lev84]. There are some additions we make to this basic
defenition in order to apply capabilities in Twizzler, most notablity the addition of a cryptograhic
signature. Since capabilities are stored on-disk, the kernel needs a way to ensure the policy its
enforcing is coming from a trusted entity. If this weren’t the case, it would be trivial for a bad actor
to manipulate capabilties, and the kernel would be none-the-wiser as it goes to enforce it. Thus we
have this construciton of an cryptographically signed capability, in which the kernel only enforces
after it verifies the signature to be authentic.

This paradigm permits kernel-free access of data, while also guaranteeing security by enforcing
it right before the point of access through the MMU.

1.3 Our Contributions
In this thesis, I detail the fundamentals of security in the Twizzler operating system, and discuss
how I implement and refine some of the high level ideas described in Twizzler [Bit+20] and an early
draft of a Twizzler security paper [Bit+]. Additionally, we evaluate these systems inside kernel and
user space through microbenchmarks.

A list of merged PR’s to Twizzler:

1. Old Security Port to Main
• Implementation of SigningKey and VerifyingKey mentioned in seciton 2.
• Implementation of Capabilities mentioned in section 3.
• Support to compile twizzler-security for the kernel and userspace

2. Adds creation of SigningKey / VerifyingKey object pairs.
• Implementation of the keypair objects containing singing and verifying keys, mentioned in

section 2.
• Userspace tests for keypair creation and usage of signing / verifying keys.

3. Security Contexts and Benchmarking
• Implements Security Contexts for kernel and userspace, as described in section 4.
• A benchmarking framework for the kernel.
• Benchmarks for cryptographic operations inside the kernel, shown in seciton 5.
• Userspace benchmarks of security policy creation, shown in section 5.

More details can be found in this Github tracking issue.
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Chapter 2

Key Pairs
Key-Pairs in Twizzler are two objects, one containing a signing key, and the other having a

verifying key. The signing key is used to form the signature when creating a capability, while the
verifying key is used by the kernel to validate a capability before granting access rights. More detail
can be found about capability signatures in section 3.1.

The keys are represented as follows:

struct Key {
    buf: [u8; MAX_KEY_SIZE], /// Buffer storing the bytes of keys.
    len: u64,                /// The length of key in bytes.
    scheme: SigningScheme,   /// Enum marking what scheme the key is.
}

Since the underlying data is just a byte array, the keys themselves are scheme-agnostic, enabling
support for multiple cryptograhic schemes, as described in the Twizzler security paper [Bit+20]. The
enum also makes backward compatibility trivial when adding new signing schemes. The keys are
stored inside of objects, allowing for persistent or volatile storage depending on object specification,
and allows for keys themselves to be treated as any other object and have security policy applied
to them.

2.1 Abstraction
Currently we use the Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01] to sign capabil-
ities and verify them, but the simplistic data representation allows for any arbitrary algorithm to
be used as long as the key can be represented as bytes.

An existing drawback for backward compatibility is the maximum size of the buffer we store
the key in. Currently the maximum size as 256 bytes, meaning if a future cryptographic signing
scheme was to be added with a key size larger than 256 bytes, we would have to drop backwards
compatibility. While this can be prevented now by setting the maximum size to something larger,
it ends up being tradeoff between possible cryptographic schemes vs the real on-disk cost of larger
buffers, something we plan to investigate in future work.

2.2 Compartmentalization
To create an object in Twizzler, you specify the ID of a verifying key object so the kernel knows
which key to use to verify any capabilities permitting access to the object. Since keys are represented
as objects, security policy applies on them as well, creating satisfying solutions in regards to key
management.
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Suppose for instance we have Alice on Twizzler, and all users have a “user-root” keypair that
allows them to create an arbitrary number of objects. Also suppose that access to this user-root
keypair is protected by some login program, where only Alice can log in. This means that Alice
can create new keypair objects from her user-root keypair. Since all her new keypairs originate
from her original user-root keypair, only she can access the keys required to create new signatures
allowing permissions into her objects. It forms an elegant solution for key management without the
involvement of the kernel.
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Chapter 3

Capabilities
Capabilities are the atomic unit of security in Twizzler, acting as tokens of protections that

allow a process to access an object in the ways it describes. More information about how capabilities
interact with processes can be found in section 4.2. Colloquially a capability is defined as permissions
and a unique object to which those permissions apply, but in Twizzler we add the signature
component to allow the kernel to validate that the security policy was created by an authorized party.

Thus, a Capability is represented as follows:

struct Cap {
    target: ObjID,      // Object ID this capability grants access to.
    accessor: ObjID,    // Security context ID in which this capability resides.
    prots: Protections, // Specific access rights this capability grants.
    flags: CapFlags,    // Cryptographic configuration for capability validation.
    gates: Gates,       // Constraints on where permisions are applied.
    revocation: Revoc,  // Specifies when this capability is invalid, i.e. expiration.
    sig: Signature,     // The signature.
}

3.1 Signature
The signature is what determines the validity of the capability. The only possible signer of some
capability is who ever has permissions to read the signing key object, or the kernel itself. The
signature is built up of an array with a maximum length and an enum representing what type of
cryptographic scheme was used to create it; quite similar to the keys mentioned in section 2. The
fields of the capability are serialized and hashed to form the message that gets signed, and then
stored in the signature field. Currently we support Blake3 and Sha256 as hashing algorithms.

3.2 Gates
Gates act as a limited entry point into objects. If a capability has a non-trivial gate, which is made
up of an offset field, and a length field, the kernel will read that and ensure that any memory accesses
into that object are within the gate bounds. The original Twizzler paper [Bit+20] describes gates
as a way to perform IPC, and calls between distinct programs, but in the context of this thesis it is
sufficient to think of them as a region of allowed memory access.

3.3 Flags
Currently, flags in capabilities are used to specify which hashing algorithm was used to form the
message that was signed. We allow multiple algorithms to be used to allow for backward capability
when newer, more efficient hashing algorithms are created.
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The flags inside a capability is a bitmask providing information about distinct feautures of that
capability. Currently they only convey the hashing algoritmn but there’s plenty of bits left to use.
We hope for future work to develop more expressive ways of using capabilities through the flags.
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Chapter 4

Security Contexts
Security Contexts are objects that threads attach to in-order to inherit access rights, represented

as capabilities, inside the context. Additionally, a thread can attach to multiple security contexts,
but can only utilize the permissions granted by one unless they switch [Bit+20]. The contexts store
capabilities, allowing for userspace programs to add capabilities to contexts, and kernel space to
efficiently search through them to determine whether a process has the permissions to perform a
memory access.

4.1 Base
Since security contexts can be interacted with by the kernel and userspace, there needs to be a
consistent definition that both parties can adhere to, which we define. Objects in Twizzler have
a notion of a Base which defines an arbitrary block of data at the “bottom” of an object that is
represented as a type in rust. We define the Base for a security context as follows:

struct SecCtxBase {
    map: Map<ObjID, Vec<CtxMapItem>>, /// A Map from ObjIDs to possible capabilities.
    masks: Map<ObjID, Mask>,          /// A map from ObjID's to masks.
    global_mask: Protections,         /// Global mask that applies to granted prots.
    flags: SecCtxFlags,               /// Flags specific to this security context.
}

4.1.1 Map
The map contains positions of capabilities related to a target object, enabling kernel and userspace
to look for capabilities inside security contexts. Implicitly, the kernel uses this map for lookup while
the user interacts with this map to indicate the insertion, removal, or modification of a capability.
The Map type here and for masks is a flat data-structure, and stores offsets into the object where
capabilities can be found for a target object.

4.1.2 Masks
Masks act as a restraint on the permissions a context can provide for some target object. This allows
for more expressive security policy, such as being able to quickly restrict permissions for an object,
without having to remove a capability and recreating one with the dersired restricted permissions.

The global mask is quite similar to the masks mentioned above, except that it operates on
permissions granted by the security context as a whole rather than a mask per distinct object id.

4.1.3 Flags
Flags is a bitmap allowing for a Security Context to have different properties. Currently, there is
only one value, UNDETACHABLE, marking the security context as a jail of sorts, as once a process
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attaches to it, it won’t be able to detach. This acts as a way to limit the transfer of information if
a thread attaches to a sensitive object. Once a thread attaches to such a context, it is forced to end
its execution with the objects that context grants permission to. We also plan to utilize these flags
in future works, as described in 6.1.

4.2 Enforcement
All enforcement happens inside the kernel, which has a seperate view into Security Contexts than
userspace. The kernel keeps track of all security contexts that threads in Twizzler attach to,
instantiating a cache in each one. To manage these threads, the kernel assigns a Security Context
Manager, which holds onto security context references that a thread has.

There exists only 1 point of enforcement for security policy if we wish to keep the kernel out of
the access path; the creation of the path itself! On page fault, the point in which a process requests
the kernel to map in an object, is when we have access to the security policy we seek to enforce
(the signed capabilities inside the security context), the target object, and most importantly, kernel
execution! Its the only time we can program the MMU according to the desired protections, and
transfer control of enforcement to the hardware [Bit+20].

Upon page fault, the kernel inspects the target object and identifies the default permissions of
that object. Then the kernel checks if the currently active security context for the accessing thread
has either cached or capabilities that provide permissions. If default permissions plus the active
context permissions arent enough to permit the access and the security context isn’t a jail, the kernel
then checks each of the inactive contexts to see if they have any relevant permissions. If there exists
such permissions, then the kernel will switch the active context of that process to the previously
inactive context where the permission was found. If it fails all of these, then the kernel terminates
the process, citing inadequate permissions.
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Chapter 5

Results
We have microbenchmarks of core security operations in Twizzler. All benchmarks were run

with a Ryzen 5 2600 with 16 gigs of ram, running Ubuntu 22.04, with Twizzler virtualized in
QEMU. The storage backend for all created objects was volatile. Unfortunately I ran out of time
to perform benchmarks on bare metal, but hope to find any discrepencies between virtualized and
actual performance in future work.

5.1 Kernel
The kernel benchmarking framework takes a closure ( a block of code we want to benchmark ), runs
it atleast 100 times, and scales the number of iterations to reach 2 seconds of total runtime, storing
the time it takes for each run. Then it computes the average, and the standard deviation from the
timings.

There are a couple of things we benchmark inside the kernel, including core cryptographic
operations like signature generation and verification, as well as the time it takes to verify a capability.

Benchmark Time

Hashing (Sha256) 267.86 ns ±163 ns

Hashing (Blake3) 125.99 ns ±117 ns

Signature Generation (ECDSA) 199.90 µ𝑠 ± 9.45µ𝑠

Signature Verification (ECDSA) 342.20 µ𝑠 ± 6.28µ𝑠

Capability Verification (ECDSA, Blake3) 343.59 µ𝑠 ± 5.32µ𝑠

Table 1: Collection of Kernel Benchmarking Results

We see that signatures are vastly more expensive than hashing, on an order of 103, meaning that your
choice of hashing algorithm doesn’t affect the total time taken for the verification of a capability.
It’s also important to note that this cost of verifying a capability for access is done on the first-
page fault, then the kernel uses caching to store the granted permissions and provides those on
subsequent page faults into that object. In the future, I hope to measure the difference between a
cached and uncached permissions calculation, as well as how many practical accesses are granted
using the cache compared to capability verifications.

5.1.1 UserSpace
Userspace benchmarks were run using rust’s built in benchmarking tool.
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In userspace, we benchmark keypair and capability creation, as these operations are core to
creating a security policy.

Benchmark Time

Capability Creation 347.97 µ𝑠 ± 5.78µ𝑠

Keypair Objects Creation 651.69µ𝑠 ± 187.90µ𝑠

Security Context Creation 282.10µ𝑠 ± 119.90µ𝑠

Table 2: Collection of UserSpace Benchmarking Results

Almost all the time spent in creating a capability is the cryptographic operations used to form its
signature, which is why it’s in the same ballpark as the signature creation we saw earlier.

The high standard deviation in Keypair objects and Security context creation happens from
the unpredictable time it takes for the kernel to create an object. The reason keypairs are almost
2x more expensive because two separate objects are created, one for the signing key, and one for
the verifying key. Performance gains would only be possible from optimizing how the kernel creates
obejcts.
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Chapter 6

Conclusion
In short we provide a general overview of the critical security components in Twizzler, along

with implementation details and desgin descisions. Then we go over microbenchmarks to show and
explain the cost of these operations.

The results affirm our intuition that performance would be greatly improved via caching. The
cost of verifying a signature everytime a new page from an object had to be mapped into a process’s
memory space would be redundant. Additionally, the performance of the kernel verifying signatures
is bottlenecked by the performance of the cryptograhpic scheme, meaning its a good plan to allow
for the addition of new schemes while allowing for backwards compatibility since adopting a more
performant scheme would lead to pure performance gains.

6.1 Future Work
There are a number of things I hope to achieve in future work, listed as follows.

• Perform a cost-benefit analysis between key sizes and buffer size, trying to optimimze for a future
proof key size in order to maximize backwards compatibility.

• Program the kernel to perform permission checks during a page fault. I was hoping to get this
completed before the end of this quarter, but we ran into some bugs and were unable to resolve
them in time. Once this is hooked up, we plan to design scenarios that test the degress of
expressivity allowed by our secuirty model to ensure it operates as expected.

• Investigate areas of the security model that could be extended to support Decentralized Infor-
mation Flow Control, inspired by the work done in FLUME [Kro+07].

• Create a onboarding process that allows new students to learn the essentials of Twizzler to foster
a learning environment; hopefully leading to increased student contributions towards the project.

• Clear code documentation so that users wanting to interface with the security library have an
easier time.
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